

Who I Am

- Ezra Lloyd
- Web developer & electronics tinkerer

What I'm Teaching

- From Arduino → to Raspberry Pi
- Exploring smart home automation

The Problem

- The Problem:
 - Stuffy indoor air
 - Condensation & humidity
 - Inefficient ventilation

Early Attempts

- Tried...
- Fan Timer — not smart enough
- Arduino — limited and requires external programming
- Raspberry Pi Zero W — versatile and self contained

The Core Idea

Compare dewpoints
(temperature - (100 - humidity)/5)

If the outdoor dewpoint is lower than the
indoor dewpoint, switch on the fan.

Hardware Setup

- Hardware Components:
 - Raspberry Pi Zero W
 - DHT22 indoor & outdoor sensors
 - Relay to control fan
 - 12v DC blower fan

The Code at a Glance

```
if Odp < (Idp - 2) and wait >= 11:  
    pi.write(4, 1) # Turn fan ON  
elif Idp <= Odp:  
    pi.write(4, 0) # Turn fan OFF
```

- Compare indoor & outdoor dewpoints
- Only run fan when outdoor air is drier

Smart Safeguards

- Built-In Safety & Logic:
- Hysteresis (prevents rapid cycling)
- Temperature limits
- Auto reboot if sensors fail
- Runs fully offline

Results

- Results:
 - Consistent comfort
 - Lower indoor humidity
 - Fully automated operation

Lessons & Next Steps

- What's Next:
 - Add MQTT or web dashboard
 - Better sensor calibration
 - Try ESP32 for lighter version

Get in touch

Want to build one? Let's connect.

- Ezra Lloyd on Facebook
- (423)883-5147
- qualitycontrolconsultingqc2@gmail.com